Nuprl Lemma : odd-plus-odd

[n,m:ℤ].  ↑isEven(n m) supposing (↑isOdd(n)) ∧ (↑isOdd(m))


Proof




Definitions occuring in Statement :  isEven: isEven(n) isOdd: isOdd(n) assert: b uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q add: m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q same-parity: same-parity(n;m) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  not: ¬A false: False bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  isEven_wf eqtt_to_assert even-iff-not-odd eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot assert_witness same-parity_wf istype-assert isOdd_wf istype-int iff_weakening_uiff assert_wf isEven-add
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality hypothesis inhabitedIsType lambdaFormation_alt unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination sqequalRule independent_functionElimination voidElimination dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination instantiate cumulativity because_Cache productIsType isect_memberEquality_alt isectIsTypeImplies addEquality

Latex:
\mforall{}[n,m:\mBbbZ{}].    \muparrow{}isEven(n  +  m)  supposing  (\muparrow{}isOdd(n))  \mwedge{}  (\muparrow{}isOdd(m))



Date html generated: 2020_05_19-PM-10_01_14
Last ObjectModification: 2019_11_13-AM-10_38_17

Theory : num_thy_1


Home Index