Nuprl Lemma : odd-plus-even
∀[n,m:ℤ]. ↑isOdd(n + m) supposing (↑isOdd(n)) ∧ (↑isEven(m))
Proof
Definitions occuring in Statement :
isEven: isEven(n)
,
isOdd: isOdd(n)
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
and: P ∧ Q
,
add: n + m
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
and: P ∧ Q
,
same-parity: same-parity(n;m)
,
all: ∀x:A. B[x]
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
Lemmas referenced :
isEven_wf,
eqtt_to_assert,
even-iff-not-odd,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_wf,
bool_subtype_base,
assert-bnot,
istype-assert,
same-parity_wf,
isOdd_wf,
istype-int,
iff_weakening_uiff,
assert_wf,
not_wf,
isOdd-add
Rules used in proof :
cut,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
lambdaFormation_alt,
thin,
sqequalHypSubstitution,
productElimination,
extract_by_obid,
isectElimination,
hypothesisEquality,
hypothesis,
inhabitedIsType,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
sqequalRule,
independent_functionElimination,
voidElimination,
dependent_pairFormation_alt,
equalityIstype,
promote_hyp,
dependent_functionElimination,
instantiate,
cumulativity,
because_Cache,
lambdaEquality_alt,
functionIsTypeImplies,
productIsType,
isect_memberEquality_alt,
isectIsTypeImplies,
addEquality
Latex:
\mforall{}[n,m:\mBbbZ{}]. \muparrow{}isOdd(n + m) supposing (\muparrow{}isOdd(n)) \mwedge{} (\muparrow{}isEven(m))
Date html generated:
2020_05_19-PM-10_01_10
Last ObjectModification:
2019_11_12-PM-03_46_34
Theory : num_thy_1
Home
Index