Nuprl Lemma : isOdd-add
∀[n,m:ℤ].  uiff(↑isOdd(n + m);¬↑same-parity(n;m))
Proof
Definitions occuring in Statement : 
same-parity: same-parity(n;m), 
isOdd: isOdd(n), 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
not: ¬A, 
add: n + m, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ
Lemmas referenced : 
isOdd-isEven-add, 
assert_witness, 
assert_wf, 
same-parity_wf, 
isOdd_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
hypothesis, 
sqequalRule, 
independent_pairEquality, 
isect_memberEquality, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
intEquality, 
voidElimination, 
addEquality
Latex:
\mforall{}[n,m:\mBbbZ{}].    uiff(\muparrow{}isOdd(n  +  m);\mneg{}\muparrow{}same-parity(n;m))
Date html generated:
2016_05_14-PM-04_24_42
Last ObjectModification:
2015_12_26-PM-08_20_03
Theory : num_thy_1
Home
Index