Nuprl Lemma : isOdd-add

[n,m:ℤ].  uiff(↑isOdd(n m);¬↑same-parity(n;m))


Proof




Definitions occuring in Statement :  same-parity: same-parity(n;m) isOdd: isOdd(n) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A add: m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a not: ¬A implies:  Q false: False prop:
Lemmas referenced :  isOdd-isEven-add assert_witness assert_wf same-parity_wf isOdd_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination hypothesis sqequalRule independent_pairEquality isect_memberEquality lambdaEquality dependent_functionElimination because_Cache equalityTransitivity equalitySymmetry independent_functionElimination intEquality voidElimination addEquality

Latex:
\mforall{}[n,m:\mBbbZ{}].    uiff(\muparrow{}isOdd(n  +  m);\mneg{}\muparrow{}same-parity(n;m))



Date html generated: 2016_05_14-PM-04_24_42
Last ObjectModification: 2015_12_26-PM-08_20_03

Theory : num_thy_1


Home Index