Nuprl Lemma : isOdd-isEven-add

[n,m:ℤ].  (uiff(↑isOdd(n m);¬↑same-parity(n;m)) ∧ uiff(↑isEven(n m);↑same-parity(n;m)))


Proof




Definitions occuring in Statement :  same-parity: same-parity(n;m) isEven: isEven(n) isOdd: isOdd(n) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A and: P ∧ Q add: m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a not: ¬A implies:  Q false: False prop: cand: c∧ B all: x:A. B[x] guard: {T} top: Top subtract: m sq_type: SQType(T) assert: b ifthenelse: if then else fi  btrue: tt true: True same-parity: same-parity(n;m) bool: 𝔹 unit: Unit it: bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb isOdd: isOdd(n) eq_int: (i =z j) modulus: mod n isEven: isEven(n) absval: |i|
Lemmas referenced :  assert_wf same-parity_wf isOdd_wf assert_witness not_wf isEven_wf odd-implies general_add_assoc same-parity-implies add-subtract-cancel not-same-parity-implies even-implies add-associates add-swap add-commutes zero-add and_wf equal_wf assert_elim subtype_base_sq bool_wf bool_subtype_base add-zero eqtt_to_assert even-iff-not-odd eqff_to_assert bool_cases_sqequal assert-bnot bool_cases assert_of_bnot odd-iff-not-even subtract_wf subtract-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut intWeakElimination sqequalHypSubstitution thin rename hypothesis productElimination sqequalRule independent_pairEquality isect_memberEquality isectElimination hypothesisEquality lambdaEquality dependent_functionElimination voidElimination extract_by_obid addEquality equalityTransitivity equalitySymmetry independent_functionElimination natural_numberEquality because_Cache intEquality independent_pairFormation lambdaFormation independent_isectElimination voidEquality dependent_set_memberEquality applyLambdaEquality setElimination instantiate cumulativity hyp_replacement unionElimination equalityElimination dependent_pairFormation promote_hyp callbyvalueReduce sqleReflexivity minusEquality

Latex:
\mforall{}[n,m:\mBbbZ{}].    (uiff(\muparrow{}isOdd(n  +  m);\mneg{}\muparrow{}same-parity(n;m))  \mwedge{}  uiff(\muparrow{}isEven(n  +  m);\muparrow{}same-parity(n;m)))



Date html generated: 2017_04_17-AM-09_43_48
Last ObjectModification: 2017_02_27-PM-05_38_43

Theory : num_thy_1


Home Index