Nuprl Lemma : not-same-parity-implies
∀[n,m:ℤ]. ((¬↑same-parity(n;m))
⇒ {(↑same-parity(n;m - 1)) ∧ (↑same-parity(n;m + 1))})
Proof
Definitions occuring in Statement :
same-parity: same-parity(n;m)
,
assert: ↑b
,
uall: ∀[x:A]. B[x]
,
guard: {T}
,
not: ¬A
,
implies: P
⇒ Q
,
and: P ∧ Q
,
subtract: n - m
,
add: n + m
,
natural_number: $n
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
implies: P
⇒ Q
,
guard: {T}
,
and: P ∧ Q
,
same-parity: same-parity(n;m)
,
all: ∀x:A. B[x]
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
ifthenelse: if b then t else f fi
,
or: P ∨ Q
,
sq_type: SQType(T)
,
bfalse: ff
,
not: ¬A
,
false: False
,
subtype_rel: A ⊆r B
,
prop: ℙ
Lemmas referenced :
isEven_wf,
bool_wf,
eqtt_to_assert,
bool_cases,
subtype_base_sq,
bool_subtype_base,
eqff_to_assert,
assert_of_bnot,
uiff_transitivity,
equal-wf-base,
int_subtype_base,
assert_wf,
bnot_wf,
not_wf,
equal_wf,
same-parity_wf,
assert_witness,
subtract_wf,
odd-iff-not-even,
odd-implies,
even-iff-not-odd,
even-implies
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
independent_pairFormation,
sqequalHypSubstitution,
extract_by_obid,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
productElimination,
independent_isectElimination,
sqequalRule,
because_Cache,
dependent_functionElimination,
instantiate,
cumulativity,
independent_functionElimination,
voidElimination,
baseApply,
closedConclusion,
baseClosed,
applyEquality,
lambdaEquality,
independent_pairEquality,
natural_numberEquality,
addEquality,
intEquality,
isect_memberEquality
Latex:
\mforall{}[n,m:\mBbbZ{}]. ((\mneg{}\muparrow{}same-parity(n;m)) {}\mRightarrow{} \{(\muparrow{}same-parity(n;m - 1)) \mwedge{} (\muparrow{}same-parity(n;m + 1))\})
Date html generated:
2017_04_17-AM-09_43_33
Last ObjectModification:
2017_02_27-PM-05_38_19
Theory : num_thy_1
Home
Index