Nuprl Lemma : odd-iff-not-even

[n:ℤ]. uiff(↑isOdd(n);¬↑isEven(n))


Proof




Definitions occuring in Statement :  isEven: isEven(n) isOdd: isOdd(n) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False all: x:A. B[x] guard: {T} prop: or: P ∨ Q
Lemmas referenced :  odd-implies assert_wf isEven_wf isOdd_wf odd-or-even assert_of_bor assert_witness not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation thin lemma_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis productElimination voidElimination isectElimination sqequalRule lambdaEquality because_Cache independent_isectElimination unionElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry intEquality

Latex:
\mforall{}[n:\mBbbZ{}].  uiff(\muparrow{}isOdd(n);\mneg{}\muparrow{}isEven(n))



Date html generated: 2016_05_14-PM-04_24_06
Last ObjectModification: 2015_12_26-PM-08_19_28

Theory : num_thy_1


Home Index