Nuprl Lemma : ml-int-vec-mul-sq
∀[a:ℤ]. ∀[as:ℤ List].  (ml-int-vec-mul(a;as) ~ a * as)
Proof
Definitions occuring in Statement : 
ml-int-vec-mul: ml-int-vec-mul(a;as)
, 
int-vec-mul: a * as
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
ml-int-vec-mul: ml-int-vec-mul(a;as)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
int-vec-mul: a * as
Lemmas referenced : 
subtype_base_sq, 
list_wf, 
list_subtype_base, 
int_subtype_base, 
int-valueall-type, 
int-value-type, 
int-vec-mul_wf, 
ml-map-sq
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
hypothesis, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom, 
isect_memberEquality, 
hypothesisEquality, 
because_Cache, 
independent_pairFormation, 
productElimination, 
lambdaEquality, 
multiplyEquality
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[as:\mBbbZ{}  List].    (ml-int-vec-mul(a;as)  \msim{}  a  *  as)
Date html generated:
2017_09_29-PM-05_56_44
Last ObjectModification:
2017_05_19-PM-05_45_04
Theory : omega
Home
Index