Nuprl Lemma : ml-int-vec-mul-sq

[a:ℤ]. ∀[as:ℤ List].  (ml-int-vec-mul(a;as) as)


Proof




Definitions occuring in Statement :  ml-int-vec-mul: ml-int-vec-mul(a;as) int-vec-mul: as list: List uall: [x:A]. B[x] int: sqequal: t
Definitions unfolded in proof :  ml-int-vec-mul: ml-int-vec-mul(a;as) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} and: P ∧ Q cand: c∧ B int-vec-mul: as
Lemmas referenced :  subtype_base_sq list_wf list_subtype_base int_subtype_base int-valueall-type int-value-type int-vec-mul_wf ml-map-sq
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality hypothesis independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom isect_memberEquality hypothesisEquality because_Cache independent_pairFormation productElimination lambdaEquality multiplyEquality

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[as:\mBbbZ{}  List].    (ml-int-vec-mul(a;as)  \msim{}  a  *  as)



Date html generated: 2017_09_29-PM-05_56_44
Last ObjectModification: 2017_05_19-PM-05_45_04

Theory : omega


Home Index