Nuprl Lemma : approx-type_wf
∀[T:Type]. (approx-type(T) ∈ Type)
Proof
Definitions occuring in Statement : 
approx-type: approx-type(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
guard: {T}
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
approx-per: approx-per(T;x;y)
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
approx-type: approx-type(T)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
approx-per-trans, 
base_wf, 
approx-per_wf, 
pertype_wf
Rules used in proof : 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
because_Cache, 
independent_pairFormation, 
productElimination, 
lambdaFormation, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
cumulativity, 
lambdaEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  (approx-type(T)  \mmember{}  Type)
Date html generated:
2018_05_21-PM-00_05_15
Last ObjectModification:
2017_12_30-PM-01_42_27
Theory : partial_1
Home
Index