Nuprl Lemma : fix-diverges
∀f:partial(Void) ⟶ partial(Void). (fix(f) ~ ⊥)
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
bottom: ⊥
, 
all: ∀x:A. B[x]
, 
fix: fix(F)
, 
function: x:A ⟶ B[x]
, 
void: Void
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
partial-void, 
fixpoint-induction-bottom, 
partial_wf, 
void-value-type, 
void-mono, 
bottom_wf-partial
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
voidEquality, 
hypothesis, 
independent_isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality
Latex:
\mforall{}f:partial(Void)  {}\mrightarrow{}  partial(Void).  (fix(f)  \msim{}  \mbot{})
Date html generated:
2016_05_14-AM-06_11_17
Last ObjectModification:
2015_12_26-AM-11_51_41
Theory : partial_1
Home
Index