Nuprl Lemma : fix-diverges

f:partial(Void) ⟶ partial(Void). (fix(f) ~ ⊥)


Proof




Definitions occuring in Statement :  partial: partial(T) bottom: all: x:A. B[x] fix: fix(F) function: x:A ⟶ B[x] void: Void sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a so_lambda: λ2x.t[x]
Lemmas referenced :  partial-void fixpoint-induction-bottom partial_wf void-value-type void-mono bottom_wf-partial
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination voidEquality hypothesis independent_isectElimination because_Cache sqequalRule lambdaEquality hypothesisEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}f:partial(Void)  {}\mrightarrow{}  partial(Void).  (fix(f)  \msim{}  \mbot{})



Date html generated: 2016_05_14-AM-06_11_17
Last ObjectModification: 2015_12_26-AM-11_51_41

Theory : partial_1


Home Index