Nuprl Lemma : fix_wf_partial
∀[A:Type]. ∀[f:partial(A) ⟶ partial(A)]. (fix(f) ∈ partial(A)) supposing value-type(A) ∧ mono(A)
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
mono: mono(T)
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
fix: fix(F)
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
fixpoint-induction-bottom2, 
partial_wf, 
bottom_wf-partial, 
and_wf, 
value-type_wf, 
mono_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
lambdaEquality, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[f:partial(A)  {}\mrightarrow{}  partial(A)].  (fix(f)  \mmember{}  partial(A))  supposing  value-type(A)  \mwedge{}  mono(A)
Date html generated:
2016_05_14-AM-06_10_13
Last ObjectModification:
2015_12_26-AM-11_51_58
Theory : partial_1
Home
Index