Nuprl Lemma : fix_wf_partial

[A:Type]. ∀[f:partial(A) ⟶ partial(A)]. (fix(f) ∈ partial(A)) supposing value-type(A) ∧ mono(A)


Proof




Definitions occuring in Statement :  partial: partial(T) mono: mono(T) value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T fix: fix(F) function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q prop:
Lemmas referenced :  fixpoint-induction-bottom2 partial_wf bottom_wf-partial and_wf value-type_wf mono_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin lemma_by_obid isectElimination hypothesisEquality hypothesis independent_isectElimination lambdaEquality sqequalRule axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[f:partial(A)  {}\mrightarrow{}  partial(A)].  (fix(f)  \mmember{}  partial(A))  supposing  value-type(A)  \mwedge{}  mono(A)



Date html generated: 2016_05_14-AM-06_10_13
Last ObjectModification: 2015_12_26-AM-11_51_58

Theory : partial_1


Home Index