Nuprl Lemma : member-approx-type
∀[T:Type]. ∀x:Base. uiff(x ∈ approx-type(T);↓∃t:Base. ((x ≤ t) ∧ (t ∈ T)))
Proof
Definitions occuring in Statement : 
approx-type: approx-type(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
member: t ∈ T
, 
base: Base
, 
universe: Type
, 
sqle: s ≤ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
approx-type: approx-type(T)
, 
so_lambda: λ2x y.t[x; y]
, 
subtype_rel: A ⊆r B
, 
approx-per: approx-per(T;x;y)
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
Lemmas referenced : 
approx-type_wf, 
squash_wf, 
base_wf, 
sqle_wf_base, 
equal-wf-base, 
istype-base, 
istype-universe, 
approx-per_wf, 
istype-sqle
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
hypothesis, 
sqequalHypSubstitution, 
imageElimination, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
thin, 
baseClosed, 
Error :equalityIsType4, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :functionIsTypeImplies, 
instantiate, 
universeEquality, 
pertypeElimination, 
promote_hyp, 
applyEquality, 
pertypeMemberEquality, 
Error :dependent_pairFormation_alt, 
Error :productIsType, 
Error :equalityIsType2
Latex:
\mforall{}[T:Type].  \mforall{}x:Base.  uiff(x  \mmember{}  approx-type(T);\mdownarrow{}\mexists{}t:Base.  ((x  \mleq{}  t)  \mwedge{}  (t  \mmember{}  T)))
Date html generated:
2019_06_20-PM-00_34_59
Last ObjectModification:
2018_11_20-PM-03_29_38
Theory : partial_1
Home
Index