Nuprl Lemma : no-excluded-middle-squash-using-partial

¬↓∀P:ℙ(P ∨ P))


Proof




Definitions occuring in Statement :  prop: all: x:A. B[x] not: ¬A squash: T or: P ∨ Q
Definitions unfolded in proof :  not: ¬A implies:  Q squash: T false: False member: t ∈ T uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] or: P ∨ Q all: x:A. B[x]
Lemmas referenced :  no-excluded-middle-using-partial squash_wf all_wf or_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution imageElimination independent_functionElimination thin hypothesis voidElimination Error :universeIsType,  instantiate isectElimination closedConclusion universeEquality sqequalRule Error :lambdaEquality_alt,  hypothesisEquality because_Cache applyEquality cumulativity Error :inhabitedIsType,  equalityTransitivity equalitySymmetry

Latex:
\mneg{}\mdownarrow{}\mforall{}P:\mBbbP{}.  (P  \mvee{}  (\mneg{}P))



Date html generated: 2019_06_20-PM-00_34_57
Last ObjectModification: 2018_10_15-PM-03_55_20

Theory : partial_1


Home Index