Nuprl Lemma : no-excluded-middle-squash-using-partial
¬↓∀P:ℙ. (P ∨ (¬P))
Proof
Definitions occuring in Statement : 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
squash: ↓T
, 
or: P ∨ Q
Definitions unfolded in proof : 
not: ¬A
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
false: False
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
no-excluded-middle-using-partial, 
squash_wf, 
all_wf, 
or_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
imageElimination, 
independent_functionElimination, 
thin, 
hypothesis, 
voidElimination, 
Error :universeIsType, 
instantiate, 
isectElimination, 
closedConclusion, 
universeEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
hypothesisEquality, 
because_Cache, 
applyEquality, 
cumulativity, 
Error :inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mneg{}\mdownarrow{}\mforall{}P:\mBbbP{}.  (P  \mvee{}  (\mneg{}P))
Date html generated:
2019_06_20-PM-00_34_57
Last ObjectModification:
2018_10_15-PM-03_55_20
Theory : partial_1
Home
Index