Nuprl Lemma : no-excluded-middle-using-partial

¬(∀P:ℙ(P ∨ P)))


Proof




Definitions occuring in Statement :  prop: all: x:A. B[x] not: ¬A or: P ∨ Q
Definitions unfolded in proof :  not: ¬A implies:  Q all: x:A. B[x] member: t ∈ T prop: or: P ∨ Q false: False isl: isl(x) uall: [x:A]. B[x] uimplies: supposing a and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b decidable: Dec(P) sq_stable: SqStable(P) iff: ⇐⇒ Q squash: T rev_implies:  Q has-value: (a)↓
Lemmas referenced :  istype-void int-value-type partial_wf fix_wf_partial int-mono eqtt_to_assert bottom_wf-partial eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot decidable__assert bottom_diverge sq_stable_from_decidable assert_wf has-value_wf-partial istype-assert int_subtype_base subtype_partial_sqtype_base sq_stable__has-value has-value_wf_base is-exception_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalRule functionIsType universeIsType universeEquality unionIsType sqequalHypSubstitution hypothesisEquality because_Cache cut introduction extract_by_obid hypothesis rename lambdaEquality_alt inhabitedIsType thin unionElimination equalityIsType1 equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination isectElimination intEquality independent_isectElimination independent_pairFormation applyEquality setElimination equalityElimination productElimination dependent_pairFormation_alt promote_hyp instantiate cumulativity voidElimination natural_numberEquality equalityIstype imageMemberEquality baseClosed imageElimination divergentSqle sqleReflexivity

Latex:
\mneg{}(\mforall{}P:\mBbbP{}.  (P  \mvee{}  (\mneg{}P)))



Date html generated: 2020_05_19-PM-09_36_45
Last ObjectModification: 2020_01_04-PM-07_57_41

Theory : partial_1


Home Index