Nuprl Lemma : per-partial-subtype

A,B:Type. ∀a,b:Base.  ((A ⊆B)  per-partial(A;a;b)  per-partial(B;a;b))


Proof




Definitions occuring in Statement :  per-partial: per-partial(T;x;y) subtype_rel: A ⊆B all: x:A. B[x] implies:  Q base: Base universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q per-partial: per-partial(T;x;y) and: P ∧ Q uiff: uiff(P;Q) cand: c∧ B uimplies: supposing a member: t ∈ T has-value: (a)↓ prop: uall: [x:A]. B[x] guard: {T}
Lemmas referenced :  has-value_wf_base equal_functionality_wrt_subtype_rel2 per-partial_wf subtype_rel_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut independent_pairFormation isect_memberFormation introduction independent_isectElimination hypothesis sqequalRule axiomSqleEquality lemma_by_obid isectElimination hypothesisEquality equalityTransitivity equalitySymmetry independent_functionElimination because_Cache universeEquality

Latex:
\mforall{}A,B:Type.  \mforall{}a,b:Base.    ((A  \msubseteq{}r  B)  {}\mRightarrow{}  per-partial(A;a;b)  {}\mRightarrow{}  per-partial(B;a;b))



Date html generated: 2016_05_14-AM-06_09_23
Last ObjectModification: 2015_12_26-AM-11_52_26

Theory : partial_1


Home Index