Nuprl Lemma : respects-equality-partial

[T:Type]. respects-equality(partial(T);T) supposing value-type(T)


Proof




Definitions occuring in Statement :  partial: partial(T) value-type: value-type(T) uimplies: supposing a respects-equality: respects-equality(S;T) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a respects-equality: respects-equality(S;T) all: x:A. B[x] implies:  Q member: t ∈ T and: P ∧ Q cand: c∧ B
Lemmas referenced :  shorter-proof-of-termination-equality value-type-has-value partial_wf istype-base value-type_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis equalityTransitivity equalitySymmetry independent_pairFormation sqequalRule Error :equalityIstype,  Error :universeIsType,  because_Cache sqequalBase instantiate universeEquality

Latex:
\mforall{}[T:Type].  respects-equality(partial(T);T)  supposing  value-type(T)



Date html generated: 2019_06_20-PM-00_33_57
Last ObjectModification: 2018_12_22-PM-01_16_36

Theory : partial_1


Home Index