Nuprl Lemma : respects-equality-partial
∀[T:Type]. respects-equality(partial(T);T) supposing value-type(T)
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
respects-equality: respects-equality(S;T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
respects-equality: respects-equality(S;T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
shorter-proof-of-termination-equality, 
value-type-has-value, 
partial_wf, 
istype-base, 
value-type_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
sqequalRule, 
Error :equalityIstype, 
Error :universeIsType, 
because_Cache, 
sqequalBase, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  respects-equality(partial(T);T)  supposing  value-type(T)
Date html generated:
2019_06_20-PM-00_33_57
Last ObjectModification:
2018_12_22-PM-01_16_36
Theory : partial_1
Home
Index