Nuprl Lemma : subtype-approx-type
∀[T:Type]. T ⊆r approx-type(T) supposing mono(T) ∨ (T ⊆r Base)
Proof
Definitions occuring in Statement : 
approx-type: approx-type(T)
, 
mono: mono(T)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
approx-type: approx-type(T)
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
Lemmas referenced : 
base_wf, 
subtype_rel_wf, 
mono_wf, 
or_wf, 
approx-type_wf, 
approx-per-for-base, 
approx-per-for-mono
Rules used in proof : 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
isect_memberEquality, 
cumulativity, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesis, 
axiomEquality, 
sqequalRule, 
hypothesisEquality, 
lambdaEquality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
rename, 
pertypeMemberEquality, 
pointwiseFunctionalityForEquality, 
dependent_functionElimination, 
independent_isectElimination, 
unionElimination
Latex:
\mforall{}[T:Type].  T  \msubseteq{}r  approx-type(T)  supposing  mono(T)  \mvee{}  (T  \msubseteq{}r  Base)
Date html generated:
2018_05_21-PM-00_05_19
Last ObjectModification:
2017_12_30-PM-02_20_37
Theory : partial_1
Home
Index