Nuprl Lemma : if-per-void
∀[t:Top]. (per-void() 
⇒ t)
Proof
Definitions occuring in Statement : 
per-void: per-void()
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
per-void: per-void()
, 
member: t ∈ T
, 
not: ¬A
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
top_wf, 
per-void_wf, 
sqle_wf_base, 
not-btrue-sqle-bfalse
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
introduction, 
hypothesisEquality, 
pertypeElimination, 
sqequalRule, 
lemma_by_obid, 
independent_functionElimination, 
thin, 
voidElimination, 
isectElimination, 
baseClosed, 
because_Cache
Latex:
\mforall{}[t:Top].  (per-void()  {}\mRightarrow{}  t)
Date html generated:
2016_05_13-PM-03_53_25
Last ObjectModification:
2016_01_14-PM-07_16_03
Theory : per!type
Home
Index