Nuprl Lemma : member-per-value

[x:Base]. x ∈ per-value() supposing (x)↓


Proof




Definitions occuring in Statement :  per-value: per-value() has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T base: Base
Definitions unfolded in proof :  prop: per-set: per-set(A;a.B[a]) per-value: per-value() uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q cand: c∧ B
Lemmas referenced :  per-set_wf base_wf has-value_wf_base
Rules used in proof :  because_Cache isect_memberEquality hypothesisEquality thin isectElimination lemma_by_obid equalitySymmetry equalityTransitivity axiomEquality sqequalRule hypothesis sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution cumulativity extract_by_obid lambdaEquality independent_pairFormation pertypeMemberEquality

Latex:
\mforall{}[x:Base].  x  \mmember{}  per-value()  supposing  (x)\mdownarrow{}



Date html generated: 2019_06_20-AM-11_30_28
Last ObjectModification: 2018_08_07-PM-00_57_35

Theory : per!type


Home Index