Nuprl Lemma : member-per-value
∀[x:Base]. x ∈ per-value() supposing (x)↓
Proof
Definitions occuring in Statement : 
per-value: per-value()
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
base: Base
Definitions unfolded in proof : 
prop: ℙ
, 
per-set: per-set(A;a.B[a])
, 
per-value: per-value()
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
per-set_wf, 
base_wf, 
has-value_wf_base
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
lemma_by_obid, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
sqequalRule, 
hypothesis, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
cumulativity, 
extract_by_obid, 
lambdaEquality, 
independent_pairFormation, 
pertypeMemberEquality
Latex:
\mforall{}[x:Base].  x  \mmember{}  per-value()  supposing  (x)\mdownarrow{}
Date html generated:
2019_06_20-AM-11_30_28
Last ObjectModification:
2018_08_07-PM-00_57_35
Theory : per!type
Home
Index