Nuprl Lemma : per-apply_wf

[A:Type]. ∀[B:type-function{i:l}(A)]. ∀[f:per-function(A;a.B[a])]. ∀[a:A].  (per-apply(f;a) ∈ tf-apply(B;a))


Proof




Definitions occuring in Statement :  per-apply: per-apply(f;x) tf-apply: tf-apply(f;x) type-function: type-function{i:l}(A) per-function: per-function(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s] per-apply: per-apply(f;x) tf-apply: tf-apply(f;x)
Lemmas referenced :  per-function_wf type-function_wf apply-wf-per
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality introduction hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:type-function\{i:l\}(A)].  \mforall{}[f:per-function(A;a.B[a])].  \mforall{}[a:A].
    (per-apply(f;a)  \mmember{}  tf-apply(B;a))



Date html generated: 2016_05_13-PM-03_54_00
Last ObjectModification: 2015_12_26-AM-10_40_50

Theory : per!type


Home Index