Nuprl Lemma : per-apply_wf
∀[A:Type]. ∀[B:type-function{i:l}(A)]. ∀[f:per-function(A;a.B[a])]. ∀[a:A].  (per-apply(f;a) ∈ tf-apply(B;a))
Proof
Definitions occuring in Statement : 
per-apply: per-apply(f;x)
, 
tf-apply: tf-apply(f;x)
, 
type-function: type-function{i:l}(A)
, 
per-function: per-function(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
per-apply: per-apply(f;x)
, 
tf-apply: tf-apply(f;x)
Lemmas referenced : 
per-function_wf, 
type-function_wf, 
apply-wf-per
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
introduction, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:type-function\{i:l\}(A)].  \mforall{}[f:per-function(A;a.B[a])].  \mforall{}[a:A].
    (per-apply(f;a)  \mmember{}  tf-apply(B;a))
Date html generated:
2016_05_13-PM-03_54_00
Last ObjectModification:
2015_12_26-AM-10_40_50
Theory : per!type
Home
Index