Nuprl Lemma : per-exists_wf

[A:Type]. ∀[B:type-function{i:l}(A)].  (per-exists(A;a.B[a]) ∈ Type)


Proof




Definitions occuring in Statement :  per-exists: per-exists(A;a.B[a]) type-function: type-function{i:l}(A) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T per-exists: per-exists(A;a.B[a]) type-function: type-function{i:l}(A)
Lemmas referenced :  per-product_wf type-function_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule equalityTransitivity hypothesis equalitySymmetry axiomEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:type-function\{i:l\}(A)].    (per-exists(A;a.B[a])  \mmember{}  Type)



Date html generated: 2016_05_13-PM-03_54_23
Last ObjectModification: 2015_12_26-AM-10_40_46

Theory : per!type


Home Index