Nuprl Lemma : per-exists_wf
∀[A:Type]. ∀[B:type-function{i:l}(A)].  (per-exists(A;a.B[a]) ∈ Type)
Proof
Definitions occuring in Statement : 
per-exists: per-exists(A;a.B[a])
, 
type-function: type-function{i:l}(A)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
per-exists: per-exists(A;a.B[a])
, 
type-function: type-function{i:l}(A)
Lemmas referenced : 
per-product_wf, 
type-function_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:type-function\{i:l\}(A)].    (per-exists(A;a.B[a])  \mmember{}  Type)
Date html generated:
2016_05_13-PM-03_54_23
Last ObjectModification:
2015_12_26-AM-10_40_46
Theory : per!type
Home
Index