Nuprl Lemma : per-int_wf
per-int() ∈ Type
Proof
Definitions occuring in Statement : 
per-int: per-int()
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
per-int: per-int()
, 
uand: uand(A;B)
, 
has-value: (a)↓
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
top: Top
Lemmas referenced : 
uand_wf, 
has-value_wf_base, 
is-exception_wf, 
sqle_wf_base, 
top_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalIntensionalEquality, 
hypothesisEquality, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesis, 
pertypeEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
lambdaEquality, 
divergentSqle, 
sqleReflexivity, 
rename, 
isectEquality, 
isect_memberFormation, 
axiomSqleEquality, 
isaxiomCases, 
axiomSqEquality, 
isect_memberEquality, 
because_Cache, 
voidElimination, 
voidEquality, 
promote_hyp
Latex:
per-int()  \mmember{}  Type
Date html generated:
2019_06_20-AM-11_29_57
Last ObjectModification:
2018_08_21-AM-00_12_49
Theory : per!type
Home
Index