Nuprl Lemma : per-int_wf

per-int() ∈ Type


Proof




Definitions occuring in Statement :  per-int: per-int() member: t ∈ T universe: Type
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] per-int: per-int() uand: uand(A;B) has-value: (a)↓ subtype_rel: A ⊆B prop: top: Top
Lemmas referenced :  uand_wf has-value_wf_base is-exception_wf sqle_wf_base top_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalIntensionalEquality hypothesisEquality sqequalRule baseApply closedConclusion baseClosed hypothesis pertypeEquality equalityTransitivity equalitySymmetry applyEquality lambdaEquality divergentSqle sqleReflexivity rename isectEquality isect_memberFormation axiomSqleEquality isaxiomCases axiomSqEquality isect_memberEquality because_Cache voidElimination voidEquality promote_hyp

Latex:
per-int()  \mmember{}  Type



Date html generated: 2019_06_20-AM-11_29_57
Last ObjectModification: 2018_08_21-AM-00_12_49

Theory : per!type


Home Index