Nuprl Lemma : uand-subtype1

[A,B:Type]. ∀[z:uand(A;B)].  (z ∈ A)


Proof




Definitions occuring in Statement :  uand: uand(A;B) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uand: uand(A;B) has-value: (a)↓ subtype_rel: A ⊆B prop:
Lemmas referenced :  uand_wf has-value_wf_base is-exception_wf sqle_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution isectElimination thin baseClosed sqequalRule hypothesis axiomEquality equalityTransitivity equalitySymmetry extract_by_obid hypothesisEquality isect_memberEquality because_Cache universeEquality applyEquality lambdaEquality divergentSqle sqleReflexivity rename isectEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[z:uand(A;B)].    (z  \mmember{}  A)



Date html generated: 2019_06_20-AM-11_29_54
Last ObjectModification: 2018_08_21-AM-00_01_19

Theory : per!type


Home Index