Nuprl Lemma : eq-in-quot

A:Type. ∀a,b:⇃(A).  (a b ∈ ⇃(A))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] all: x:A. B[x] true: True universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] quotient: x,y:A//B[x; y] and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a implies:  Q prop:
Lemmas referenced :  quotient_wf equal-wf-base equiv_rel_true true_wf quotient-member-eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut pointwiseFunctionalityForEquality because_Cache sqequalHypSubstitution sqequalRule pertypeElimination productElimination thin hypothesis lemma_by_obid isectElimination lambdaEquality cumulativity hypothesisEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination productEquality universeEquality

Latex:
\mforall{}A:Type.  \mforall{}a,b:\00D9(A).    (a  =  b)



Date html generated: 2016_05_14-AM-06_08_47
Last ObjectModification: 2016_05_13-PM-00_09_22

Theory : quot_1


Home Index