Nuprl Lemma : eq-in-quot
∀A:Type. ∀a,b:⇃(A). (a = b ∈ ⇃(A))
Proof
Definitions occuring in Statement :
quotient: x,y:A//B[x; y]
,
all: ∀x:A. B[x]
,
true: True
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
quotient: x,y:A//B[x; y]
,
and: P ∧ Q
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
uimplies: b supposing a
,
implies: P
⇒ Q
,
prop: ℙ
Lemmas referenced :
quotient_wf,
equal-wf-base,
equiv_rel_true,
true_wf,
quotient-member-eq
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
pointwiseFunctionalityForEquality,
because_Cache,
sqequalHypSubstitution,
sqequalRule,
pertypeElimination,
productElimination,
thin,
hypothesis,
lemma_by_obid,
isectElimination,
lambdaEquality,
cumulativity,
hypothesisEquality,
independent_isectElimination,
dependent_functionElimination,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
productEquality,
universeEquality
Latex:
\mforall{}A:Type. \mforall{}a,b:\00D9(A). (a = b)
Date html generated:
2016_05_14-AM-06_08_47
Last ObjectModification:
2016_05_13-PM-00_09_22
Theory : quot_1
Home
Index