Nuprl Lemma : extend-type_wf

[T:Type]. ((T)+ ∈ Type)


Proof




Definitions occuring in Statement :  extend-type: (T)+ uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T extend-type: (T)+ so_lambda: λ2y.t[x; y] prop: and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  quotient_wf base_wf iff_wf equal-wf-base equal-wf-T-base istype-base extend-type-equiv istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis Error :lambdaEquality_alt,  productEquality because_Cache functionEquality Error :inhabitedIsType,  hypothesisEquality independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry instantiate universeEquality

Latex:
\mforall{}[T:Type].  ((T)+  \mmember{}  Type)



Date html generated: 2019_06_20-PM-00_33_24
Last ObjectModification: 2018_11_25-PM-06_36_45

Theory : quot_1


Home Index