Nuprl Lemma : extend-type_wf
∀[T:Type]. ((T)+ ∈ Type)
Proof
Definitions occuring in Statement : 
extend-type: (T)+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
extend-type: (T)+
, 
so_lambda: λ2x y.t[x; y]
, 
prop: ℙ
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
quotient_wf, 
base_wf, 
iff_wf, 
equal-wf-base, 
equal-wf-T-base, 
istype-base, 
extend-type-equiv, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
Error :lambdaEquality_alt, 
productEquality, 
because_Cache, 
functionEquality, 
Error :inhabitedIsType, 
hypothesisEquality, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  ((T)+  \mmember{}  Type)
Date html generated:
2019_06_20-PM-00_33_24
Last ObjectModification:
2018_11_25-PM-06_36_45
Theory : quot_1
Home
Index