Nuprl Lemma : half-squash-stable__and

[P,Q:ℙ].  (half-squash-stable(P)  half-squash-stable(Q)  half-squash-stable(P ∧ Q))


Proof




Definitions occuring in Statement :  half-squash-stable: half-squash-stable(P) uall: [x:A]. B[x] prop: implies:  Q and: P ∧ Q
Definitions unfolded in proof :  guard: {T} uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] prop: member: t ∈ T cand: c∧ B and: P ∧ Q implies:  Q uall: [x:A]. B[x] half-squash-stable: half-squash-stable(P)
Lemmas referenced :  implies-quotient-true equiv_rel_true true_wf quotient_wf
Rules used in proof :  promote_hyp independent_functionElimination productElimination universeEquality functionEquality independent_isectElimination because_Cache lambdaEquality hypothesisEquality cumulativity productEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction hypothesis independent_pairFormation cut lambdaFormation isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[P,Q:\mBbbP{}].    (half-squash-stable(P)  {}\mRightarrow{}  half-squash-stable(Q)  {}\mRightarrow{}  half-squash-stable(P  \mwedge{}  Q))



Date html generated: 2017_09_29-PM-05_48_10
Last ObjectModification: 2017_08_30-AM-11_07_04

Theory : quot_1


Home Index