Nuprl Lemma : no-excluded-middle-quot-true1

¬(∀P:ℙ. ⇃(P ∨ P)))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] prop: all: x:A. B[x] not: ¬A or: P ∨ Q true: True
Definitions unfolded in proof :  not: ¬A implies:  Q equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] true: True member: t ∈ T squash: T or: P ∨ Q uall: [x:A]. B[x] prop: false: False sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] so_apply: x[s] so_apply: x[s1;s2] uimplies: supposing a subtype_rel: A ⊆B so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  istype-base has-value_wf_base istype-void squash_wf true_wf not-has-value-decidable-quot all_wf base_wf quotient_wf or_wf not_wf equiv_rel_true quotient-dep-function-subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut independent_pairFormation introduction natural_numberEquality sqequalRule imageMemberEquality hypothesisEquality thin baseClosed sqequalHypSubstitution hypothesis imageElimination extract_by_obid Error :functionIsType,  Error :unionIsType,  Error :universeIsType,  isectElimination because_Cache Error :inhabitedIsType,  Error :lambdaEquality_alt,  closedConclusion independent_isectElimination universeEquality dependent_functionElimination rename independent_functionElimination voidElimination applyEquality

Latex:
\mneg{}(\mforall{}P:\mBbbP{}.  \00D9(P  \mvee{}  (\mneg{}P)))



Date html generated: 2019_06_20-PM-00_32_39
Last ObjectModification: 2018_10_16-PM-02_41_49

Theory : quot_1


Home Index