Nuprl Lemma : no-excluded-middle-quot-true1
¬(∀P:ℙ. ⇃(P ∨ (¬P)))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
, 
true: True
Definitions unfolded in proof : 
not: ¬A
, 
implies: P 
⇒ Q
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
true: True
, 
member: t ∈ T
, 
squash: ↓T
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
false: False
, 
sym: Sym(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
istype-base, 
has-value_wf_base, 
istype-void, 
squash_wf, 
true_wf, 
not-has-value-decidable-quot, 
all_wf, 
base_wf, 
quotient_wf, 
or_wf, 
not_wf, 
equiv_rel_true, 
quotient-dep-function-subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
independent_pairFormation, 
introduction, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
thin, 
baseClosed, 
sqequalHypSubstitution, 
hypothesis, 
imageElimination, 
extract_by_obid, 
Error :functionIsType, 
Error :unionIsType, 
Error :universeIsType, 
isectElimination, 
because_Cache, 
Error :inhabitedIsType, 
Error :lambdaEquality_alt, 
closedConclusion, 
independent_isectElimination, 
universeEquality, 
dependent_functionElimination, 
rename, 
independent_functionElimination, 
voidElimination, 
applyEquality
Latex:
\mneg{}(\mforall{}P:\mBbbP{}.  \00D9(P  \mvee{}  (\mneg{}P)))
Date html generated:
2019_06_20-PM-00_32_39
Last ObjectModification:
2018_10_16-PM-02_41_49
Theory : quot_1
Home
Index