Nuprl Lemma : quotient-function-subtype

[X:Type]
  ∀[A:Type]. ∀[E:A ⟶ A ⟶ ℙ].
    (EquivRel(A;a,b.E[a;b])  ((X ⟶ (a,b:A//E[a;b])) ⊆(f,g:X ⟶ A//fun-equiv(X;a,b.↓E[a;b];f;g)))) 
  supposing X ⊆Base


Proof




Definitions occuring in Statement :  fun-equiv: fun-equiv(X;a,b.E[a; b];f;g) equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: so_apply: x[s1;s2] squash: T implies:  Q function: x:A ⟶ B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] so_apply: x[s1;s2] all: x:A. B[x] so_apply: x[s1;s2;s3] fun-equiv: fun-equiv(X;a,b.E[a; b];f;g) prop: so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B
Lemmas referenced :  quotient-dep-function-subtype equiv_rel_wf subtype_rel_wf base_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality introduction independent_isectElimination lambdaFormation sqequalRule lambdaEquality applyEquality independent_functionElimination dependent_functionElimination axiomEquality functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[X:Type]
    \mforall{}[A:Type].  \mforall{}[E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
        (EquivRel(A;a,b.E[a;b])
        {}\mRightarrow{}  ((X  {}\mrightarrow{}  (a,b:A//E[a;b]))  \msubseteq{}r  (f,g:X  {}\mrightarrow{}  A//fun-equiv(X;a,b.\mdownarrow{}E[a;b];f;g)))) 
    supposing  X  \msubseteq{}r  Base



Date html generated: 2016_05_14-AM-06_09_11
Last ObjectModification: 2015_12_26-AM-11_48_20

Theory : quot_1


Home Index