Nuprl Lemma : quotient-function-subtype
∀[X:Type]
  ∀[A:Type]. ∀[E:A ⟶ A ⟶ ℙ].
    (EquivRel(A;a,b.E[a;b]) 
⇒ ((X ⟶ (a,b:A//E[a;b])) ⊆r (f,g:X ⟶ A//fun-equiv(X;a,b.↓E[a;b];f;g)))) 
  supposing X ⊆r Base
Proof
Definitions occuring in Statement : 
fun-equiv: fun-equiv(X;a,b.E[a; b];f;g)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
so_apply: x[s1;s2;s3]
, 
fun-equiv: fun-equiv(X;a,b.E[a; b];f;g)
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
quotient-dep-function-subtype, 
equiv_rel_wf, 
subtype_rel_wf, 
base_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
introduction, 
independent_isectElimination, 
lambdaFormation, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
independent_functionElimination, 
dependent_functionElimination, 
axiomEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[X:Type]
    \mforall{}[A:Type].  \mforall{}[E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
        (EquivRel(A;a,b.E[a;b])
        {}\mRightarrow{}  ((X  {}\mrightarrow{}  (a,b:A//E[a;b]))  \msubseteq{}r  (f,g:X  {}\mrightarrow{}  A//fun-equiv(X;a,b.\mdownarrow{}E[a;b];f;g)))) 
    supposing  X  \msubseteq{}r  Base
Date html generated:
2016_05_14-AM-06_09_11
Last ObjectModification:
2015_12_26-AM-11_48_20
Theory : quot_1
Home
Index