Nuprl Lemma : two-implies-quotient-true
∀[P,Q,R:ℙ].  ((P 
⇒ Q 
⇒ R) 
⇒ {⇃(P) 
⇒ ⇃(Q) 
⇒ ⇃(R)})
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
true: True
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
true: True
Lemmas referenced : 
quotient_wf, 
true_wf, 
equiv_rel_true, 
quotient-member-eq, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
rename, 
introduction, 
pointwiseFunctionalityForEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
pertypeElimination, 
productElimination, 
dependent_functionElimination, 
applyEquality, 
functionEquality, 
independent_functionElimination, 
natural_numberEquality, 
productEquality, 
universeEquality
Latex:
\mforall{}[P,Q,R:\mBbbP{}].    ((P  {}\mRightarrow{}  Q  {}\mRightarrow{}  R)  {}\mRightarrow{}  \{\00D9(P)  {}\mRightarrow{}  \00D9(Q)  {}\mRightarrow{}  \00D9(R)\})
Date html generated:
2016_05_14-AM-06_08_51
Last ObjectModification:
2015_12_26-AM-11_48_23
Theory : quot_1
Home
Index