Nuprl Lemma : connex_functionality_wrt_iff

[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].  ((∀x,y:T.  (R[x;y] ⇐⇒ R'[x;y]))  (Connex(T;x,y.R[x;y]) ⇐⇒ Connex(T;x,y.R'[x;y])))


Proof




Definitions occuring in Statement :  connex: Connex(T;x,y.R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q connex: Connex(T;x,y.R[x; y]) member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q all: x:A. B[x] rev_implies:  Q subtype_rel: A ⊆B or: P ∨ Q guard: {T}
Lemmas referenced :  all_wf iff_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality hypothesis functionEquality universeEquality independent_pairFormation because_Cache addLevel productElimination impliesFunctionality allFunctionality orFunctionality dependent_functionElimination independent_functionElimination allLevelFunctionality orLevelFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:T.    (R[x;y]  \mLeftarrow{}{}\mRightarrow{}  R'[x;y]))  {}\mRightarrow{}  (Connex(T;x,y.R[x;y])  \mLeftarrow{}{}\mRightarrow{}  Connex(T;x,y.R'[x;y])))



Date html generated: 2016_10_21-AM-09_42_17
Last ObjectModification: 2016_08_01-PM-09_49_21

Theory : rel_1


Home Index