Nuprl Lemma : greatest-lower-bound-assoc

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ∀[a,b,c,x,y,u1,u2:T].
    (u1 u2 ∈ T) supposing 
       (greatest-lower-bound(T;x,y.R[x;y];a;b;x) and 
       greatest-lower-bound(T;x,y.R[x;y];x;c;u1) and 
       greatest-lower-bound(T;x,y.R[x;y];b;c;y) and 
       greatest-lower-bound(T;x,y.R[x;y];a;y;u2)) 
  supposing Order(T;x,y.R[x;y])


Proof




Definitions occuring in Statement :  greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) order: Order(T;x,y.R[x; y]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) and: P ∧ Q all: x:A. B[x] implies:  Q order: Order(T;x,y.R[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) cand: c∧ B trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  greatest-lower-bound_wf order_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality productElimination dependent_functionElimination independent_functionElimination independent_pairFormation lambdaFormation

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}[a,b,c,x,y,u1,u2:T].
        (u1  =  u2)  supposing 
              (greatest-lower-bound(T;x,y.R[x;y];a;b;x)  and 
              greatest-lower-bound(T;x,y.R[x;y];x;c;u1)  and 
              greatest-lower-bound(T;x,y.R[x;y];b;c;y)  and 
              greatest-lower-bound(T;x,y.R[x;y];a;y;u2)) 
    supposing  Order(T;x,y.R[x;y])



Date html generated: 2016_05_13-PM-04_18_37
Last ObjectModification: 2015_12_26-AM-11_27_55

Theory : rel_1


Home Index