Nuprl Lemma : pair-order

[A,B:Type]. ∀[Ra:A ⟶ A ⟶ ℙ]. ∀[Rb:B ⟶ B ⟶ ℙ].
  (Order(A;a,a'.Ra[a;a'])
   Order(B;b,b'.Rb[b;b'])
   Order(A × B;x,y.Ra[fst(x);fst(y)] ∧ ((¬((fst(x)) (fst(y)) ∈ A)) ∨ Rb[snd(x);snd(y)])))


Proof




Definitions occuring in Statement :  order: Order(T;x,y.R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] pi1: fst(t) pi2: snd(t) not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q function: x:A ⟶ B[x] product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q order: Order(T;x,y.R[x; y]) and: P ∧ Q cand: c∧ B refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] decidable: Dec(P) or: P ∨ Q pi1: fst(t) member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} so_apply: x[s1;s2] trans: Trans(T;x,y.E[x; y]) pi2: snd(t) subtype_rel: A ⊆B anti_sym: AntiSym(T;x,y.R[x; y]) so_lambda: λ2y.t[x; y] not: ¬A false: False
Lemmas referenced :  not_wf equal_wf pi1_wf pi2_wf or_wf order_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut independent_pairFormation hypothesis inlFormation sqequalRule hypothesisEquality introduction extract_by_obid isectElimination cumulativity lambdaEquality independent_pairEquality unionElimination inrFormation applyEquality functionExtensionality productEquality because_Cache functionEquality universeEquality dependent_functionElimination independent_functionElimination equalityTransitivity equalitySymmetry hyp_replacement dependent_set_memberEquality applyLambdaEquality setElimination rename voidElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[Ra:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Rb:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    (Order(A;a,a'.Ra[a;a'])
    {}\mRightarrow{}  Order(B;b,b'.Rb[b;b'])
    {}\mRightarrow{}  Order(A  \mtimes{}  B;x,y.Ra[fst(x);fst(y)]  \mwedge{}  ((\mneg{}((fst(x))  =  (fst(y))))  \mvee{}  Rb[snd(x);snd(y)])))



Date html generated: 2017_02_20-AM-10_47_10
Last ObjectModification: 2017_02_02-PM-10_10_45

Theory : rel_1


Home Index