Nuprl Lemma : pair-order
∀[A,B:Type]. ∀[Ra:A ⟶ A ⟶ ℙ]. ∀[Rb:B ⟶ B ⟶ ℙ].
  (Order(A;a,a'.Ra[a;a'])
  
⇒ Order(B;b,b'.Rb[b;b'])
  
⇒ Order(A × B;x,y.Ra[fst(x);fst(y)] ∧ ((¬((fst(x)) = (fst(y)) ∈ A)) ∨ Rb[snd(x);snd(y)])))
Proof
Definitions occuring in Statement : 
order: Order(T;x,y.R[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
order: Order(T;x,y.R[x; y])
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
pi1: fst(t)
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
so_apply: x[s1;s2]
, 
trans: Trans(T;x,y.E[x; y])
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
, 
anti_sym: AntiSym(T;x,y.R[x; y])
, 
so_lambda: λ2x y.t[x; y]
, 
not: ¬A
, 
false: False
Lemmas referenced : 
not_wf, 
equal_wf, 
pi1_wf, 
pi2_wf, 
or_wf, 
order_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
independent_pairFormation, 
hypothesis, 
inlFormation, 
sqequalRule, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
lambdaEquality, 
independent_pairEquality, 
unionElimination, 
inrFormation, 
applyEquality, 
functionExtensionality, 
productEquality, 
because_Cache, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
voidElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[Ra:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Rb:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    (Order(A;a,a'.Ra[a;a'])
    {}\mRightarrow{}  Order(B;b,b'.Rb[b;b'])
    {}\mRightarrow{}  Order(A  \mtimes{}  B;x,y.Ra[fst(x);fst(y)]  \mwedge{}  ((\mneg{}((fst(x))  =  (fst(y))))  \mvee{}  Rb[snd(x);snd(y)])))
Date html generated:
2017_02_20-AM-10_47_10
Last ObjectModification:
2017_02_02-PM-10_10_45
Theory : rel_1
Home
Index