Nuprl Lemma : squash_thru_equiv_rel

[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].  ((↓EquivRel(T;x,y.E[x;y]))  EquivRel(T;x,y.↓E[x;y]))


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] squash: T implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  squash: T refl: Refl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) equiv_rel: EquivRel(T;x,y.E[x; y]) subtype_rel: A ⊆B implies:  Q all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] and: P ∧ Q prop: so_apply: x[s1;s2] uall: [x:A]. B[x] member: t ∈ T guard: {T}
Lemmas referenced :  all_wf squash_wf
Rules used in proof :  isect_memberEquality independent_pairEquality productElimination dependent_functionElimination baseClosed imageMemberEquality imageElimination independent_pairFormation lambdaFormation isect_memberFormation universeEquality functionEquality lambdaEquality sqequalRule productEquality because_Cache hypothesis cumulativity functionExtensionality applyEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut hypothesisEquality sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((\mdownarrow{}EquivRel(T;x,y.E[x;y]))  {}\mRightarrow{}  EquivRel(T;x,y.\mdownarrow{}E[x;y]))



Date html generated: 2019_06_20-PM-00_29_10
Last ObjectModification: 2018_08_07-PM-00_51_06

Theory : rel_1


Home Index