Nuprl Lemma : squash_thru_equiv_rel
∀[T:Type]. ∀[E:T ⟶ T ⟶ ℙ]. ((↓EquivRel(T;x,y.E[x;y]))
⇒ EquivRel(T;x,y.↓E[x;y]))
Proof
Definitions occuring in Statement :
equiv_rel: EquivRel(T;x,y.E[x; y])
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2]
,
squash: ↓T
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
squash: ↓T
,
refl: Refl(T;x,y.E[x; y])
,
sym: Sym(T;x,y.E[x; y])
,
trans: Trans(T;x,y.E[x; y])
,
equiv_rel: EquivRel(T;x,y.E[x; y])
,
subtype_rel: A ⊆r B
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
and: P ∧ Q
,
prop: ℙ
,
so_apply: x[s1;s2]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
guard: {T}
Lemmas referenced :
all_wf,
squash_wf
Rules used in proof :
isect_memberEquality,
independent_pairEquality,
productElimination,
dependent_functionElimination,
baseClosed,
imageMemberEquality,
imageElimination,
independent_pairFormation,
lambdaFormation,
isect_memberFormation,
universeEquality,
functionEquality,
lambdaEquality,
sqequalRule,
productEquality,
because_Cache,
hypothesis,
cumulativity,
functionExtensionality,
applyEquality,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
introduction,
cut,
hypothesisEquality,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution,
independent_functionElimination
Latex:
\mforall{}[T:Type]. \mforall{}[E:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. ((\mdownarrow{}EquivRel(T;x,y.E[x;y])) {}\mRightarrow{} EquivRel(T;x,y.\mdownarrow{}E[x;y]))
Date html generated:
2019_06_20-PM-00_29_10
Last ObjectModification:
2018_08_07-PM-00_51_06
Theory : rel_1
Home
Index