Nuprl Lemma : squash_thru_equiv_rel
∀[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].  ((↓EquivRel(T;x,y.E[x;y])) 
⇒ EquivRel(T;x,y.↓E[x;y]))
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
squash: ↓T
, 
refl: Refl(T;x,y.E[x; y])
, 
sym: Sym(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
guard: {T}
Lemmas referenced : 
all_wf, 
squash_wf
Rules used in proof : 
isect_memberEquality, 
independent_pairEquality, 
productElimination, 
dependent_functionElimination, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
independent_pairFormation, 
lambdaFormation, 
isect_memberFormation, 
universeEquality, 
functionEquality, 
lambdaEquality, 
sqequalRule, 
productEquality, 
because_Cache, 
hypothesis, 
cumulativity, 
functionExtensionality, 
applyEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
hypothesisEquality, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((\mdownarrow{}EquivRel(T;x,y.E[x;y]))  {}\mRightarrow{}  EquivRel(T;x,y.\mdownarrow{}E[x;y]))
Date html generated:
2019_06_20-PM-00_29_10
Last ObjectModification:
2018_08_07-PM-00_51_06
Theory : rel_1
Home
Index