Nuprl Lemma : squash_thru_uequiv_rel

[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].  ((↓UniformEquivRel(T;x,y.E[x;y]))  UniformEquivRel(T;x,y.↓E[x;y]))


Proof




Definitions occuring in Statement :  uequiv_rel: UniformEquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] squash: T implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uequiv_rel: UniformEquivRel(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) uall: [x:A]. B[x] member: t ∈ T implies:  Q and: P ∧ Q cand: c∧ B squash: T prop: so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  squash_wf uall_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution imageElimination productElimination thin imageMemberEquality hypothesisEquality baseClosed hypothesis independent_pairFormation extract_by_obid isectElimination applyEquality functionExtensionality cumulativity lambdaEquality dependent_functionElimination because_Cache isect_memberEquality productEquality functionEquality universeEquality independent_pairEquality independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((\mdownarrow{}UniformEquivRel(T;x,y.E[x;y]))  {}\mRightarrow{}  UniformEquivRel(T;x,y.\mdownarrow{}E[x;y]))



Date html generated: 2016_10_21-AM-09_42_04
Last ObjectModification: 2016_08_01-PM-09_49_08

Theory : rel_1


Home Index