Nuprl Lemma : trans_imp_sp_trans_b

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (Trans(T;a,b.R[a;b])  {∀a,b,c:T.  (strict_part(x,y.R[x;y];a;b)  R[b;c]  strict_part(x,y.R[x;y];a;c))})


Proof




Definitions occuring in Statement :  strict_part: strict_part(x,y.R[x; y];a;b) trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  strict_part: strict_part(x,y.R[x; y];a;b) guard: {T} trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] implies:  Q all: x:A. B[x] and: P ∧ Q cand: c∧ B not: ¬A false: False member: t ∈ T prop: so_apply: x[s1;s2] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  not_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut independent_pairFormation hypothesis applyEquality functionExtensionality hypothesisEquality cumulativity productEquality lambdaEquality universeEquality introduction extract_by_obid isectElimination functionEquality dependent_functionElimination independent_functionElimination voidElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (Trans(T;a,b.R[a;b])
    {}\mRightarrow{}  \{\mforall{}a,b,c:T.    (strict\_part(x,y.R[x;y];a;b)  {}\mRightarrow{}  R[b;c]  {}\mRightarrow{}  strict\_part(x,y.R[x;y];a;c))\})



Date html generated: 2016_10_21-AM-09_42_59
Last ObjectModification: 2016_08_01-PM-09_48_50

Theory : rel_1


Home Index