Nuprl Lemma : trans_rel_self_functionality

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (Trans(T;x,y.R[x;y])  {∀a,a',b,b':T.  (R[b;a]  R[a';b']  R[a;a']  R[b;b'])})


Proof




Definitions occuring in Statement :  trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  guard: {T} trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation applyEquality functionExtensionality hypothesisEquality cumulativity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality functionEquality hypothesis universeEquality dependent_functionElimination independent_functionElimination because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (Trans(T;x,y.R[x;y])  {}\mRightarrow{}  \{\mforall{}a,a',b,b':T.    (R[b;a]  {}\mRightarrow{}  R[a';b']  {}\mRightarrow{}  R[a;a']  {}\mRightarrow{}  R[b;b'])\})



Date html generated: 2016_10_21-AM-09_41_55
Last ObjectModification: 2016_08_01-PM-09_49_27

Theory : rel_1


Home Index