Nuprl Lemma : uconnex_functionality_wrt_iff

[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].
  ((∀[x,y:T].  (R[x;y] ⇐⇒ R'[x;y]))  (uconnex(T; x,y.R[x;y]) ⇐⇒ uconnex(T; x,y.R'[x;y])))


Proof




Definitions occuring in Statement :  uconnex: uconnex(T; x,y.R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q uconnex: uconnex(T; x,y.R[x; y]) iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T or: P ∨ Q so_apply: x[s1;s2] prop: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q
Lemmas referenced :  uall_wf or_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality unionElimination inlFormation productElimination independent_functionElimination applyEquality sqequalRule inrFormation introduction extract_by_obid lambdaEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}[x,y:T].    (R[x;y]  \mLeftarrow{}{}\mRightarrow{}  R'[x;y]))  {}\mRightarrow{}  (uconnex(T;  x,y.R[x;y])  \mLeftarrow{}{}\mRightarrow{}  uconnex(T;  x,y.R'[x;y])))



Date html generated: 2019_06_20-PM-00_29_20
Last ObjectModification: 2018_08_25-AM-08_24_26

Theory : rel_1


Home Index