Nuprl Lemma : uconnex_functionality_wrt_implies
∀[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].
  ((∀[x,y:T].  {R[x;y] ⇒ R'[x;y]}) ⇒ {uconnex(T; x,y.R[x;y]) ⇒ uconnex(T; x,y.R'[x;y])})
Proof
Definitions occuring in Statement : 
uconnex: uconnex(T; x,y.R[x; y]), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
so_apply: x[s1;s2], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uconnex: uconnex(T; x,y.R[x; y]), 
guard: {T}, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s1;s2], 
so_apply: x[s], 
or: P ∨ Q
Lemmas referenced : 
uall_wf, 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
functionEquality, 
universeEquality, 
unionElimination, 
independent_functionElimination, 
inlFormation, 
inrFormation
Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}[x,y:T].    \{R[x;y]  {}\mRightarrow{}  R'[x;y]\})  {}\mRightarrow{}  \{uconnex(T;  x,y.R[x;y])  {}\mRightarrow{}  uconnex(T;  x,y.R'[x;y])\})
Date html generated:
2016_10_21-AM-09_42_25
Last ObjectModification:
2016_08_01-PM-09_49_09
Theory : rel_1
Home
Index