Nuprl Lemma : and_preserved_by2
∀[T:Type]. ∀[P,Q:T ⟶ ℙ]. ∀[R:T ⟶ T ⟶ T ⟶ ℙ].
  ((ternary) R preserves P  ⇒ (ternary) R preserves Q  ⇒ (ternary) R preserves P ∧ Q )
Proof
Definitions occuring in Statement : 
preserved_by2: (ternary) R preserves P , 
prop_and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
prop_and: P ∧ Q, 
preserved_by2: (ternary) R preserves P , 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
member: t ∈ T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}
Lemmas referenced : 
subtype_rel_self, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
independent_pairFormation, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
productEquality, 
instantiate, 
introduction, 
extract_by_obid, 
isectElimination, 
universeEquality, 
because_Cache, 
lambdaEquality, 
functionEquality, 
Error :functionIsType, 
Error :universeIsType, 
Error :inhabitedIsType, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[P,Q:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((ternary)  R  preserves  P    {}\mRightarrow{}  (ternary)  R  preserves  Q    {}\mRightarrow{}  (ternary)  R  preserves  P  \mwedge{}  Q  )
Date html generated:
2019_06_20-PM-00_31_44
Last ObjectModification:
2018_09_26-AM-11_46_32
Theory : relations
Home
Index