Nuprl Lemma : as_strong_wf

[T:Type]. ∀[Q,P:T ⟶ ℙ].  (P as strong as Q  ∈ ℙ)


Proof




Definitions occuring in Statement :  as_strong: as strong as  uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T as_strong: as strong as  so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality functionEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality cumulativity universeEquality Error :functionIsType,  Error :universeIsType,  because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[Q,P:T  {}\mrightarrow{}  \mBbbP{}].    (P  as  strong  as  Q    \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_31_36
Last ObjectModification: 2018_09_26-AM-11_46_27

Theory : relations


Home Index