Nuprl Lemma : cond_rel_implies_wf

[T:Type]. ∀[P:T ⟶ ℙ]. ∀[R1,R2:T ⟶ T ⟶ ℙ].  (when P, R1 => R2 ∈ ℙ)


Proof




Definitions occuring in Statement :  cond_rel_implies: when P, R1 => R2 uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cond_rel_implies: when P, R1 => R2 so_lambda: λ2x.t[x] implies:  Q prop: infix_ap: y so_apply: x[s]
Lemmas referenced :  all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality functionEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality cumulativity universeEquality Error :functionIsType,  Error :universeIsType,  because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R1,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (when  P,  R1  =>  R2  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_30_30
Last ObjectModification: 2018_09_26-PM-00_39_28

Theory : relations


Home Index