Nuprl Lemma : predicate_equivalent_implies

[T:Type]. ∀[P1,P2:T ⟶ Type].  (P1 ⇐⇒ P2 ⇐⇒ P1  P2 ∧ P2  P1)


Proof




Definitions occuring in Statement :  predicate_equivalent: P1 ⇐⇒ P2 predicate_implies: P1  P2 uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  predicate_implies: P1  P2 predicate_equivalent: P1 ⇐⇒ P2 uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] rev_implies:  Q guard: {T}
Lemmas referenced :  all_wf iff_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation independent_pairFormation lambdaFormation applyEquality hypothesisEquality because_Cache cut lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality hypothesis universeEquality productElimination functionEquality cumulativity dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[P1,P2:T  {}\mrightarrow{}  Type].    (P1  \mLeftarrow{}{}\mRightarrow{}  P2  \mLeftarrow{}{}\mRightarrow{}  P1  {}\mRightarrow{}  P2  \mwedge{}  P2  {}\mRightarrow{}  P1)



Date html generated: 2016_05_14-AM-06_05_44
Last ObjectModification: 2015_12_26-AM-11_32_32

Theory : relations


Home Index