Nuprl Lemma : preserved_by2_wf

[T:Type]. ∀[P:T ⟶ ℙ]. ∀[R:T ⟶ T ⟶ T ⟶ ℙ].  ((ternary) preserves P  ∈ ℙ)


Proof




Definitions occuring in Statement :  preserved_by2: (ternary) preserves  uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T preserved_by2: (ternary) preserves  so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality functionEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  isect_memberEquality cumulativity universeEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((ternary)  R  preserves  P    \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_31_43
Last ObjectModification: 2018_09_26-AM-11_46_32

Theory : relations


Home Index