Nuprl Lemma : preserved_by_symmetric
∀[T:Type]. ∀[P:T ⟶ ℙ]. ∀[R:T ⟶ T ⟶ ℙ]. (Sym(T;x,y.x R y)
⇒ R preserves P
⇒ R^-1 preserves P)
Proof
Definitions occuring in Statement :
rel_inverse: R^-1
,
preserved_by: R preserves P
,
sym: Sym(T;x,y.E[x; y])
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
infix_ap: x f y
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
rel_inverse: R^-1
,
preserved_by: R preserves P
,
sym: Sym(T;x,y.E[x; y])
,
infix_ap: x f y
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
guard: {T}
Lemmas referenced :
all_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
Error :isect_memberFormation_alt,
lambdaFormation,
applyEquality,
hypothesisEquality,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
lambdaEquality,
functionEquality,
hypothesis,
Error :functionIsType,
Error :universeIsType,
Error :inhabitedIsType,
universeEquality,
dependent_functionElimination,
independent_functionElimination
Latex:
\mforall{}[T:Type]. \mforall{}[P:T {}\mrightarrow{} \mBbbP{}]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. (Sym(T;x,y.x R y) {}\mRightarrow{} R preserves P {}\mRightarrow{} R\^{}-1 preserves P)
Date html generated:
2019_06_20-PM-00_31_03
Last ObjectModification:
2018_09_26-PM-00_43_06
Theory : relations
Home
Index