Nuprl Lemma : preserved_by_symmetric

[T:Type]. ∀[P:T ⟶ ℙ]. ∀[R:T ⟶ T ⟶ ℙ].  (Sym(T;x,y.x y)  preserves  R^-1 preserves P)


Proof




Definitions occuring in Statement :  rel_inverse: R^-1 preserved_by: preserves P sym: Sym(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: infix_ap: y implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rel_inverse: R^-1 preserved_by: preserves P sym: Sym(T;x,y.E[x; y]) infix_ap: y uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T}
Lemmas referenced :  all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation applyEquality hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality functionEquality hypothesis Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  universeEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (Sym(T;x,y.x  R  y)  {}\mRightarrow{}  R  preserves  P  {}\mRightarrow{}  R\^{}-1  preserves  P)



Date html generated: 2019_06_20-PM-00_31_03
Last ObjectModification: 2018_09_26-PM-00_43_06

Theory : relations


Home Index