Nuprl Lemma : prop_and_wf

[T:Type]. ∀[P,Q:T ⟶ ℙ].  (P ∧ Q ∈ T ⟶ ℙ)


Proof




Definitions occuring in Statement :  prop_and: P ∧ Q uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop_and: P ∧ Q prop: and: P ∧ Q subtype_rel: A ⊆B
Lemmas referenced :  subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule lambdaEquality productEquality applyEquality hypothesisEquality hypothesis thin instantiate extract_by_obid sqequalHypSubstitution isectElimination universeEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality functionEquality cumulativity Error :functionIsType,  Error :universeIsType

Latex:
\mforall{}[T:Type].  \mforall{}[P,Q:T  {}\mrightarrow{}  \mBbbP{}].    (P  \mwedge{}  Q  \mmember{}  T  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_31_39
Last ObjectModification: 2018_09_26-AM-11_46_31

Theory : relations


Home Index