Nuprl Lemma : rel-connected_transitivity
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[x,y,z:T].  (x──R⟶y 
⇒ y──R⟶z 
⇒ x──R⟶z)
Proof
Definitions occuring in Statement : 
rel-connected: x──R⟶y
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
rel-connected: x──R⟶y
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
infix_ap: x f y
Lemmas referenced : 
rel_star_transitivity, 
rel_star_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
applyEquality, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[x,y,z:T].    (x{}{}R{}\mrightarrow{}y  {}\mRightarrow{}  y{}{}R{}\mrightarrow{}z  {}\mRightarrow{}  x{}{}R{}\mrightarrow{}z)
Date html generated:
2016_05_13-PM-04_19_18
Last ObjectModification:
2015_12_26-AM-11_33_39
Theory : relations
Home
Index