Nuprl Lemma : rel_star_transitivity

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[x,y,z:T].  ((x (R^*) y)  (y (R^*) z)  (x (R^*) z))


Proof




Definitions occuring in Statement :  rel_star: R^* uall: [x:A]. B[x] prop: infix_ap: y implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rel_star: R^* infix_ap: y uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T nat: all: x:A. B[x] guard: {T} sq_stable: SqStable(P) squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  add_nat_wf nat_wf sq_stable__le equal_wf le_wf rel_exp_wf exists_wf rel_exp_add
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation dependent_set_memberEquality addEquality setElimination rename cut hypothesisEquality hypothesis introduction extract_by_obid isectElimination natural_numberEquality independent_functionElimination imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry dependent_functionElimination applyEquality lambdaEquality Error :inhabitedIsType,  Error :universeIsType,  Error :functionIsType,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[x,y,z:T].
    ((x  (R\^{}*)  y)  {}\mRightarrow{}  (y  (R\^{}*)  z)  {}\mRightarrow{}  (x  (R\^{}*)  z))



Date html generated: 2019_06_20-PM-00_30_38
Last ObjectModification: 2018_09_26-PM-00_50_36

Theory : relations


Home Index