Nuprl Lemma : rel_star_transitivity
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[x,y,z:T].  ((x (R^*) y) 
⇒ (y (R^*) z) 
⇒ (x (R^*) z))
Proof
Definitions occuring in Statement : 
rel_star: R^*
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
rel_star: R^*
, 
infix_ap: x f y
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
add_nat_wf, 
nat_wf, 
sq_stable__le, 
equal_wf, 
le_wf, 
rel_exp_wf, 
exists_wf, 
rel_exp_add
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
cut, 
hypothesisEquality, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
applyEquality, 
lambdaEquality, 
Error :inhabitedIsType, 
Error :universeIsType, 
Error :functionIsType, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[x,y,z:T].
    ((x  (R\^{}*)  y)  {}\mRightarrow{}  (y  (R\^{}*)  z)  {}\mRightarrow{}  (x  (R\^{}*)  z))
Date html generated:
2019_06_20-PM-00_30_38
Last ObjectModification:
2018_09_26-PM-00_50_36
Theory : relations
Home
Index