Nuprl Lemma : rel-connected_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[x,y:T].  (x──R⟶y ∈ ℙ)


Proof




Definitions occuring in Statement :  rel-connected: x──R⟶y uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rel-connected: x──R⟶y infix_ap: y prop:
Lemmas referenced :  rel_star_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[x,y:T].    (x{}{}R{}\mrightarrow{}y  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-04_19_17
Last ObjectModification: 2015_12_26-AM-11_33_37

Theory : relations


Home Index