Nuprl Lemma : rel_implies_transitivity

[T:Type]. ∀[R1,R2,R3:T ⟶ T ⟶ ℙ].  (R1 => R2  R2 => R3  R1 => R3)


Proof




Definitions occuring in Statement :  rel_implies: R1 => R2 uall: [x:A]. B[x] prop: implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rel_implies: R1 => R2 uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: infix_ap: y so_lambda: λ2x.t[x] so_apply: x[s] guard: {T}
Lemmas referenced :  all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation applyEquality hypothesisEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality functionEquality hypothesis cumulativity universeEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R1,R2,R3:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (R1  =>  R2  {}\mRightarrow{}  R2  =>  R3  {}\mRightarrow{}  R1  =>  R3)



Date html generated: 2016_05_14-AM-06_04_40
Last ObjectModification: 2015_12_26-AM-11_33_08

Theory : relations


Home Index