Nuprl Lemma : rel_star_symmetric_2

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y:T.  (Sym(T;x,y.x y)  (x (R^*) y)  (y (R^*) x))


Proof




Definitions occuring in Statement :  rel_star: R^* sym: Sym(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: infix_ap: y so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sym: Sym(T;x,y.E[x; y]) guard: {T}
Lemmas referenced :  rel_star_symmetric rel_star_wf sym_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality independent_functionElimination hypothesis applyEquality sqequalRule lambdaEquality Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  universeEquality dependent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}x,y:T.    (Sym(T;x,y.x  R  y)  {}\mRightarrow{}  (x  (R\^{}*)  y)  {}\mRightarrow{}  (y  (R\^{}*)  x))



Date html generated: 2019_06_20-PM-00_30_58
Last ObjectModification: 2018_09_26-PM-00_44_09

Theory : relations


Home Index