Nuprl Lemma : rel_star_symmetric

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (Sym(T;x,y.x y)  Sym(T;x,y.x (R^*) y))


Proof




Definitions occuring in Statement :  rel_star: R^* sym: Sym(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: infix_ap: y implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  sym: Sym(T;x,y.E[x; y]) uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: infix_ap: y so_lambda: λ2x.t[x] so_apply: x[s] rel_inverse: R^-1 rel_implies: R1 => R2 guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q rel_star: R^* exists: x:A. B[x]
Lemmas referenced :  rel_star_wf all_wf rel_star_monotonic rel_inverse_wf rel_inverse_star
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation applyEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality functionEquality Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  universeEquality dependent_functionElimination independent_functionElimination productElimination independent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (Sym(T;x,y.x  R  y)  {}\mRightarrow{}  Sym(T;x,y.x  rel\_star(T;  R)  y))



Date html generated: 2019_06_20-PM-00_30_57
Last ObjectModification: 2018_09_26-PM-00_41_51

Theory : relations


Home Index